Contextual Specificity in Peptide-Mediated Protein Interactions
نویسندگان
چکیده
Most biological processes are regulated through complex networks of transient protein interactions where a globular domain in one protein recognizes a linear peptide from another, creating a relatively small contact interface. Although sufficient to ensure binding, these linear motifs alone are usually too short to achieve the high specificity observed, and additional contacts are often encoded in the residues surrounding the motif (i.e. the context). Here, we systematically identified all instances of peptide-mediated protein interactions of known three-dimensional structure and used them to investigate the individual contribution of motif and context to the global binding energy. We found that, on average, the context is responsible for roughly 20% of the binding and plays a crucial role in determining interaction specificity, by either improving the affinity with the native partner or impeding non-native interactions. We also studied and quantified the topological and energetic variability of interaction interfaces, finding a much higher heterogeneity in the context residues than in the consensus binding motifs. Our analysis partially reveals the molecular mechanisms responsible for the dynamic nature of peptide-mediated interactions, and suggests a global evolutionary mechanism to maximise the binding specificity. Finally, we investigated the viability of non-native interactions and highlight cases of potential cross-reaction that might compensate for individual protein failure and establish backup circuits to increase the robustness of cell networks.
منابع مشابه
Characterization of domain-peptide interaction interface: prediction of SH3 domain-mediated protein-protein interaction network in yeast by generic structure-based models.
Determination of the binding specificity of SH3 domain, a peptide recognition module (PRM), is important to understand their biological functions and reconstruct the SH3-mediated protein-protein interaction network. In the present study, the SH3-peptide interactions for both class I and II SH3 domains were characterized by the intermolecular residue-residue interaction network. We developed gen...
متن کاملPredicting protein-peptide interactions via a network-based motif sampler
MOTIVATION Many protein-protein interactions are mediated by peptide recognition modules (PRMs), compact domains that bind to short peptides, and play a critical role in a wide array of biological processes. Recent experimental protein interaction data provide us with an opportunity to examine whether we may explain, or even predict their interactions by computational sequence analysis. Such a ...
متن کاملDomain Interaction Footprint: a multi-classification approach to predict domain-peptide interactions
MOTIVATION The flow of information within cellular pathways largely relies on specific protein-protein interactions. Discovering such interactions that are mostly mediated by peptide recognition modules (PRM) is therefore a fundamental step towards unravelling the complexity of varying pathways. Since peptides can be recognized by more than one PRM and high-throughput experiments are both time ...
متن کاملDetection of peptide-binding sites on protein surfaces: the first step toward the modeling and targeting of peptide-mediated interactions.
Peptide-mediated interactions, in which a short linear motif binds to a globular domain, play major roles in cellular regulation. An accurate structural model of this type of interaction is an excellent starting point for the characterization of the binding specificity of a given peptide-binding domain. A number of different protocols have recently been proposed for the accurate modeling of pep...
متن کاملPlant-based expression systems for protein and antimicrobial peptide production
Molecular farming technology offers a unique advantage that almost any protein can be produced economically and safely under very controlled conditions. Besides traditional production systems, such as bacteria, yeasts, insects and mammal cell lines, plants can now be used to produce eukaryotic recombinant proteins, especially therapeutic ones. Their advantages as hosts for protein production in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- PLoS ONE
دوره 3 شماره
صفحات -
تاریخ انتشار 2008